

Department of Chemistry Study and Evaluation Scheme

Program: Master of Science (Chemistry)

Year: Second / Semester: Third

				Peri	od/ hr./	week	E	valuati	on Sche	me					A	tribut	es			able	
S. No.	Course code	Course Title	Type of Paper	L	т	Р	СА	ТА	Total	ESE	Subject Total	Total Credits	Employability	Entrepreneurship	Skill Development	Gender Equality	Environment & Sustainability	Human Value	Professional Ethics	United Nations Sustainable Development Goals (SDGs)	
THEC	RIES	[1	1	1	1	1	1	T	1	1	1	1 1		1	1	1		
1.	CH501	Polymer Chemistry	Core	03	01	00	40	20	60	40	100	4	~	~	~		~		~	Industry Innovation and Infrastructure	
2.	CH513	Organic reaction, Reagents and Heterocyclic Chemistry	Core	03	01	00	40	20	60	40	100	4	~		~		~				
3.	CH514	Chemical Kinetics and Chemical Equilibrium	Core	03	01	00	40	20	60	40	100	4	~		~		*			Zero Hunger	
4.	CH515	Inorganic Reaction Mechanism and Catalysis	Core	03	01	00	40	20	60	40	100	4	~	~	~		~				
5.	CH516	Quantum Chemistry; A Molecular Approach	Elective	03	01	00	40	20	60	40	100	4	~		~		~			Clean and Affordable Energy	
6.	CH506	Bioinorganic & Supra molecular Chemistry	Elective	03	01	00	40	20	00	40	100	4	~	~	~					Good Health and Well-being 3 GOODHEALTH 	
PRAC	TICALS					•		•				•									
6.	CH517	Chemistry LabPracticals-3	Core	00	00	08	40	20	60	40	100	4	~	~	~		~			Good Health and Well-being 3 GOODHEALTH 	
			Total	15	05	08	240	120	360	240	600	24					•	•			

Effective from Session: 2023	3-24						
Course Code	CH501	Title of the Course	Polymer Chemistry	L	Т	Р	С
Year	Second	Semester	Third	3	1	0	4
Pre-Requisite	B.Sc. with Chemistry	Co-requisite	-				
Course Objectives		ification techniques and	by the mechanism of polymer preparation, thei preparation process of vinyl polymers, polyamic				

	Course Outcomes										
CO1	Evaluate the different mechanisms of polymer preparation and their classification.										
CO2	Understand the molecular weights of polymers and characterizations techniques such as IR, NMR of polymers										
CO3	Analyze various processing techniques of thermoplastics and thermosetting polymer.										
CO4	Understand the degradation of polymer and mechanism of oxidative degradation of rubber.										
CO5	Detailed study of modification and various additives of polymer and kinetics of vulcanization of rubber										

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Polymer & Polymerization	Monomers, functionality, degree of polymerizations, classification of polymers, glass transition, melting transition, polymerization methods: kinetics of addition and polycondensation polymerization (non-catalyzed and acid catalyzed); copolymerization, monomer reactivity ratios and its significance, , random, alternating, block and graft copolymers	8	1
2	Molecular weights and Characterizations of polymers	Concept of molecular weight distribution and its significance, concept of average molecular weight, determination of number average, weight average, viscosity average and Z-average molecular weights, analysis of polymers using IR, XRD UV-visible spectroscopy and microscopic techniques, polymer crystallinity, crystallites, Degree of polymerization.	8	2
3	Thermoplastics and Thermosetting polymers	Commodity and general-purpose thermoplastics: PE, PP, PS, PVC, Acrylic plastics. Condensation plastics: PET, PEAK PBI, PTFE, Polyvinyl Fluoride and Polyvinylidene fluoride, Epoxy Polymers and Silicon Polymers Thermosetting polymers: Elastomers and Resin, Biopolymers: Cellulose, Chitin and Chitosan	8	3
4	Polymer Degradation	Types of Degradation (Chain end and random degradation), Thermal Degradation, Mechanical degradation, Degradation by Ultrasonic Waves, Photodegradation, Oxidative Degradation and Hydrolytic degradation, Mechanism of oxidative degradation of rubber, Ozone Degradation.	8	4
5	Modifications and Additives of Polymers	Polymer Blends, Blending, Fiber-reinforced polymer (FRP), Polymer composites, Additives for Polymers: Types of Additives, Antioxidants, Light stabilizers, UV stabilizers, Lubricants, Process aids, Impact Modifiers, Flame retardant, antistatic agents. PVC stabilizers and Plasticizers), use of carbon black, cross-linking and vulcanization,	8	5
Referen	nce Books:			
		Ravve, 2nd Edition, Kluwer Academic publications; Polymer Science: V R Gowarikar, II ed	ition.	
	r science and technology: Jo			
		Rodriguez, Claude Cohen, C.K. Ober, L.A. Archer, Vth Edition, Taylor & Francis		
		g and P.A.Lovell.2nd Edition,Newton Thrones publication		
	rning Source:			
	1 0	/courses/103103029/pdf/mod7.pdf2.		
httne.//w	www.a.aducation.neu.adu/m	atea202/noda/712 https://nptal.ac.in/contant/storage2/nptal_data2/html/mbrd/ict/taxt/113105	5028/loc20 n	df

https://www.e-education.psu.edu/matse202/node/712 https://nptel.ac.in/content/storage2/nptel_data3/html/mhrd/ict/text/113105028/lec20.pdf http://eacharya.inflibnet.ac.in/data-server/eacharya documents/55daa452e41301c73a2cb5ac_INFIEP_208/806/ET/lec%20-3.pdf https://nptel.ac.in/content/storage2/courses/103103029/pdf/mod7.pdf

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO4	PSO5	PSO6	PSO7
C01	3	-	2	-	-	2	2	3	-	2	-	-	3	2	2	2	2	2
CO2	1	-	2	-	-	2	2	3	-	3	-	-	2	2	2	1	3	3
CO3	3	-	2	-	-	2	2	3	-	3	-	-	3	2	2	2	2	2
CO4	3	-	2	-	-	2	2	3	-	3	-	-	3	2	2	2	1	3
CO5	3	-	2	-	-	2	2	3	-	2	-	-	3	2	2	2	1	3

Effective from Sessio	on: 2019-2020						
Course Code	CH513	Title of the Course	Organic reaction, reagents & heterocyclic chemistry	L	Т	Р	С
Year	Second	Semester	Third	3	1	0	4
Pre-Requisite	BSc. with Chemistry	Co-requisite					
Course Objectives	0	name reaction, rearranger eterocyclic compounds.	nent and its mechanism, Use of reagents in organic syntl	nesis, p	orepara	tion ar	ıd

						Course (
CO1		tic concept ric Epoxida							e reaction, S	Shapiro reac	ction, Per	kin reactio	n, Sharpless
CO2										ents, Benzil vorskii rear			rangements,
CO3	acylation	etc.			-	-	-					-	alkylation,
CO4										and its cher		ction.	
CO5	Comprehe	ension for t	ne synthesi	s of some in	nportant si	x membere	d heterocyc	lic compou	inds and its	chemical re	eaction.	<u>a</u>	
Unit No.	Title of	the Unit				Cor	ntent of Un	it				Contact Hrs.	Mapped CO
1	Name 1	reactions	reaction Sharples	, Woodwa	rd hydro: tric Epoxic	xylation, illation, Ulln	Prevost hy nann reacti	ydroxylatio	n, Robins	reaction, F on annula tion, Dieck	tions,	8	1
2	Rearrar	ngements	Pinacol- acid rea reaction	pinacolone rrangement	rearrange s, Sommel earrangeme	ments, Wa et Hauser	igner-Meer rearrangem	ents, Curti	us rearrang	Benzil-Be ements, Scl ger reactior	hmidt	8	2
3	Rea	ReagentsUse of following reagents in organic synthesis: Dicyclohexylcarbodiimide (DCC), Gilman's reagent (lithium dimethyl cuprate), Lithium aluminium hydride (LiAlH4), Sodium borohydride (NaBH4), Lithium diisopropylamide (LDA), trimethylsilyl iodide, Wilkinson's catalyst, Pyridinium Chlorochromate (PCC), Perbenzoic acid83											
4	conden mem	Introduction to condensed five membered heterocycles Introduction of petroleum refining, cracking, application of cracking, synthetic petrol, Bergius process, Fischer-Tropsh process, octane number, flash point, determination of flash point, synthesis of pure chemicals from petrochemicals. 8 4											
5	conder mem	iction to nsed six ibered ocycles	Hantzsc	h synthesis	, chemical	reactions		, furan and	thiophene	orr synthesi e, mechanis		8	5
Referenc													
		hemistry (F	Reactions 1	Mechanism	s and Struc	ture). Mich	el B. Smith	and Jerry I	March 4th	Edition, Wi	lev Inter	science Pul	olication
	book to Mec												
			-		-			-		enth edition,	. Pearson	publication	n.
	Chemistry b										,	1	
U. U	ng Source:	•			,	,		,					
	ww.organic-		org/named	eactions/be	ckmann-re	arrangemer	nt.shtm						
-	ww.youtube	-	-										
-	tel.ac.in/cou												
· ·													
nups://wv	ww.youtube	.com/water	i : v≡l G-4 I J		Articulati	n Motni-	(Mapping	of COs	th POc an				
PO-PSO	DC	DCA	DCA								DCCC	-	Page
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	2	-	1	3	3	3	-	-	-	-	-
CO2	3	2	2	-	1	2	2	2	-	-	-	-	-
CO3	3	2	3	-	1	3	2	3	-	-	-	-	-
CO4	3	2	3	-	1	3	3	2	-	-	-	-	-
CO5	3	2	1	-	1	3	2	1	-	-	-	-	-
			1-Low	Correlation	n; 2- Mode	rate Corre	lation; 3- S	Substantia	Correlati	on	•		

1-Low Correlation; 2- Widderate Correlation	ni; 5- Substantial Correlation
Normal R. Starrage Decomposition of the starrage	Ston & Sool of HoD

Sign & Seal of HoD

Effective from Sessio	n: 2019-2020						
Course Code	CH514	Title of the Course	Chemical Kinetics And Chemical Equilibrium	L	Т	Р	С
Year	Second	Semester	Third	3	1	0	4
Pre-Requisite	B.Sc. with Chemistry	Co-requisite	Elementary Mathematics				
	e	1 0	ts of chemistry as a broad base introduction to chemic				
Course Objectives	equilibrium. After succe	essfully completion of	course, the student will able understand the chemica	ıl dyna	mics o	f comp	olex
	reaction and their mecha	nism. Interestingly, it al	so deals with homogenous catalysis and its applications.				

	Course Outcomes
CO1	Students would able to analyze theories of reaction rates by taking collision theory of bimolecular reaction and activated complex, as a reference and also understand the how the concentration of inert salt affect the rate of chemical reaction.
CO2	Students evaluate fundamentals of Homogeneous catalysis with reference of Enzyme catalysis. They got sound inside of affect solvent on the rate of chemical reaction.
CO3	Students would develop the concept of chemical dynamics; Lindemann Hinshelwood and Rice-Ramsperger-Kassel-Marcus [RRKM] theory. They got the sound insight of fast reactions by flow method, Relaxation method, and Flash photolysis and their applications in research.
CO4	Students would develop the concept of spontaneity; ΔG and how the Van't Hoff equations play very important role in homogeneous as well heterogeneous equilibrium. They got the sound insight with reference of Le-Chatelier's principle and its industrial applications.
CO5	Students would able to illustrate how the ionic strength is affecting activity coefficient and mean activity coefficient of electrolytes. They also got the concept of Debye-Huckel limiting law and its importance.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Theories of Reaction Rates	Kinetic theory of collision, Steric factor, Extension of collision theory, Conventional transition state theory, Thermodynamics aspects of CTST, Kinetic and thermodynamic control of reactions, Salt effects, Steady state kinetics, Kinetic isotopic effect.	8	1						
2	Solution Kinetic	Homogeneous catalysis (acid-base catalysis), Enzyme kinetics – Michaelis-Menten kinetics, Lineweaver-Burk plot, Enzyme inhibition; competitive and noncompetitive, Factors affecting the rate reaction in solutions, Effect of solvent on reaction rates.	8	2						
3	Chemical Dynamics	Unimolecular reactions and their treatments (Lindemann Hinshelwood and Rice-Ramsperger-Kassel-Marcus [RRKM] theory), Complex reactions (chain reactions, and oscillatory reactions), Studies of fast reactions by flow method, Relaxation method, Flash photolysis.	8	3						
4	Spontaneity of chemical reactions; Gibbs energy minimum; Perfect gas equilibria; Gibbs Chemical free energy change for the reaction and chemical quotient: Expression for thermodynamic									
5	Electrochemistry	Ionic strength, Activity coefficient and mean activity coefficient of electrolytes, Debye- Hückel theory of strong electrolytes, Debye-Huckel limiting law, Electrified interfaces, Overpotential, Electrolytic conductivity.	8	5						
Referen	ce Books:									
Physical	l Chemistry, P.W.Atkins	and J. D. Paulo, Oxford, 2013, 10th edition New Delhi.								
	al Kinetics, K.J. Laidler,									
		odbury, Brooks/ Cole Publishing, 1997, Pacific Grove, USA.								
Physical	Chemistry, T. Engel an	d P. Reid, Pearson, 2006, 1st edition, New Delhi.								
e-Learn	ing Source:									
https://n	ptel.ac.in/content/storag	e2/courses/122101001/downloads/lec-32.pdf								
https://www.youtube.com/watch?v=gN-yU0MDFzE										
https://w	www.youtube.com/watch	n?v=c34viSd-dVA								
https://w	https://www.khanacademy.org/science/chemical-equilibrium									

				Course	Articulatio	on Matrix:	(Mapping	of COs wi	th POs and	d PSOs)			
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	-	-	-	2	1	3	3	1	2	2	2
CO2	3	1	-	-	-	2	2	3	3	2	3	3	3
CO3	3	1	-	-	-	2	2	3	2	1	2	2	2
CO4	3	1	-	-	-	2	1	3	2	1	2	2	2
CO5	3	1	-	-	-	1	3		3	2	3	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sessio	on: 2019-2020						
Course Code	CH515	Title of the Course	Inorganic Reactions, Mechanism And Catalysis	L	L T 3 1		С
Year	Second	Semester	Third	3	T T T T T T T	0	4
Pre-Requisite	B.Sc. with Chemistry	Co-requisite					
Course Objectives	To comprehend inorganic r bio-inorganic chemistry.	eaction mechanisms, infl	uencing factors, and the significance of inorganic ele	ments i	in cont	ext wi	th

	Course Outcomes									
СО	Explanation of the basic concepts related to stability of coordination complexes and an elementary idea will be imparted regarding the basics of reaction mechanisms.									
CO	2 Detailed study and analysis of reaction mechanisms in coordination complexes will be discussed along with the factors affecting the rate of reactions.									
CO	3 Inculcation of higher order thinking ability in students to comprehend the inner and outer sphere reactions.									
CO	4 Set the overture of Bio-inorganic chemistry along with the elucidation of the role of inorganic elements in the metabolism.									
CO	5 Comprehension of the structure, functioning and role of important bio-inorganic moieties as well as the role of metal ions in body.									

Unit Contact Man

No.	Title of the	e Unit					ent of Unit					ontact Hrs.	Mapped CO
1	Types of Mechania			nciple, Fac	tors affect	ing the sta				oility consta ial emphasis		8	1
2	Substitut Reaction Coordina Compou	s in tion nds		Trans eff	ect, trans	series, Sub	ostitution i			n square pla kes, SN1, S		8	2
3	Ligand Trans Electron Tr Reaction Coordina Compou	ansfer s in tion	er and hsfer in conceptual tool, Marcus equation, Types of and factors affecting electron transfer reactions. In the second										
4	Metal Ion Biological S	ystems	Biological other nitrog	nitrogen fi enases mo	xation, mo	olybdenum s.	nitrogenas	e, spectros	copic and	other evide		8	4
5	Importa Biomolec	int	other nitrogenases model systems. Heme proteins and oxygen uptake, structure and function of hemoglobin, myoglobin homocyanins and hemerythrin, model synthetic complexes of iron, and copper Electron Transfer in Biology Structure and function of metalloproteins in electron transpor processes-cytochromes and ion sulphur proteins.									8	5
			processes-c	ytochrome	s and ion su	ulphur prot	eins.						
	ce Books:			-									
Inorganio	c Chemistry –	Principles		-				iter and R.	L. Keiter,	4th edition.	Harper (Collins Co	ollege Publ.
Inorganio New Yoi	c Chemistry – rk.	-	s of Structur	e and Rea	ctivity", J.	E. Huheey	v, E. A. Ke		L. Keiter,	4th edition.	Harper (Collins Co	ollege Publ.
Inorganio New Yoi Mechani	c Chemistry –	ic Reaction	s of Structur ns in Solutio	re and Rea	ctivity", J. roduction",	E. Huheey D. Benson	r, E. A. Ke 1, McGraw		L. Keiter,	4th edition.	Harper (Collins Co	bllege Publ.
Inorganio New Yor Mechani Mechani d- and f-	c Chemistry – rk. sm of Inorgan sms of Inorgan block Chemis	ic Reaction	s of Structur ns in Solutio ons, by C.F.I	e and Rea n – An Inti Basolo and	ctivity", J. roduction", R.G.Pearso	E. Huheey D. Benson on, Wiley, 1	r, E. A. Ke 1, McGraw New York.	–Hill.				Collins Co	ollege Publ.
Inorganio New Yon Mechani Mechani d- and f- e-Learni	c Chemistry – rk. sm of Inorgani sms of Inorgan block Chemis ing Source:	ic Reaction nic Reaction try, C. J. J	s of Structur ns in Solutio ons, by C.F.1 ones, Tutori	e and Rea n – An Inti Basolo and al Chemist	ctivity", J. roduction", R.G.Pearso	E. Huheey D. Benson on, Wiley, 1	r, E. A. Ke 1, McGraw New York.	–Hill.				Collins Co	ollege Publ.
Inorganio New Yon Mechani Mechani d- and f- e-Learni	c Chemistry – rk. sm of Inorgan sms of Inorgan block Chemis	ic Reaction nic Reaction try, C. J. J	s of Structur ns in Solutio ons, by C.F.1 ones, Tutori	e and Rea n – An Inti Basolo and al Chemist	ctivity", J. roduction", R.G.Pearso	E. Huheey D. Benson on, Wiley, 1	r, E. A. Ke 1, McGraw New York.	–Hill.				Collins Co	ollege Publ.
Inorganio New Yor Mechani <u>Mechani</u> d- and f- e-Learni https://w https://br	c Chemistry – rk. sm of Inorgan sms of Inorgan block Chemis ing Source: ww.youtube.co nmu.ac.in/Deta	ic Reaction nic Reaction try, C. J. J om/watch ⁴ ailOnline.a	s of Structur ns in Solutio ons, by C.F.J ones, Tutori ?v=dFfv_jC3 ispx?Id=388	re and Ream n – An Intr Basolo and al Chemist 3_ZY	ctivity", J. roduction", R.G.Pearso ry Texts, E	E. Huheey D. Benson on, Wiley, 1	r, E. A. Ke 1, McGraw New York.	–Hill.				Collins Co	ollege Publ.
Inorganio New Yor Mechani <u>Mechani</u> d- and f- e-Learni https://w https://br	c Chemistry – rk. sm of Inorgan sms of Inorgan block Chemis ing Source: ww.youtube.c	ic Reaction nic Reaction try, C. J. J om/watch ⁴ ailOnline.a	s of Structur ns in Solutio ons, by C.F.J ones, Tutori ?v=dFfv_jC3 ispx?Id=388	re and Ream n – An Intu Basolo and al Chemist 3_ZY 3-94-011-0	ctivity", J. roduction", R.G.Pearso ry Texts, E 255-1_17	E. Huheey D. Benson on, Wiley, . . W. Abel (r, E. A. Ke n, McGraw New York. (Ed.), Roya	–Hill. 1 Society o	f Chemistry	7, Cambridg		Collins Co	ollege Publ.
Inorganio New Yor Mechani d- and f- e-Learni https://w https://br https://lin	c Chemistry – rk. sm of Inorgan sms of Inorgan block Chemis ing Source: ww.youtube.c nmu.ac.in/Deta nk.springer.com	ic Reaction nic Reaction try, C. J. J om/watch ⁴ ailOnline.a m/chapter/	s of Structur ns in Solutio ons, by C.F.J ones, Tutori ?v=dFfv_jC3 uspx?Id=388 /10.1007/978	re and Ream n – An Intr Basolo and al Chemist 3_ZY 3-94-011-0 Course	ctivity", J. roduction", R.G.Pearso ry Texts, E 255-1_17 Articulatio	E. Huheey D. Benson on, Wiley, J. W. Abel (m Matrix:	r, E. A. Ke n, McGraw New York. (Ed.), Roya (Mapping	-Hill. 1 Society of of COs wi	f Chemistry	y, Cambridge d PSOs)	2.		
Inorganio New Yor Mechani <u>Mechani</u> d- and f- e-Learni https://w https://br	c Chemistry – rk. sm of Inorgan block Chemis ing Source: ww.youtube.co nmu.ac.in/Deta nk.springer.com	ic Reaction nic Reaction try, C. J. J om/watch ⁴ ailOnline.a	s of Structur ns in Solutio ons, by C.F.J ones, Tutori ?v=dFfv_jC3 ispx?Id=388	re and Ream n – An Intu Basolo and al Chemist 3_ZY 3-94-011-0	ctivity", J. roduction", R.G.Pearso ry Texts, E 255-1_17	E. Huheey D. Benson on, Wiley, . . W. Abel (r, E. A. Ke n, McGraw New York. (Ed.), Roya	–Hill. 1 Society o	f Chemistry	7, Cambridg		Collins Collin	PSO5
Inorganio New Yor Mechani d- and f- e-Learni https://w https://br https://lin PO-PSC	c Chemistry – rk. sm of Inorgan sms of Inorgan block Chemis ing Source: ww.youtube.co mu.ac.in/Deta nk.springer.com PO1 3	ic Reaction nic Reaction try, C. J. J om/watch ⁴ ailOnline.a m/chapter/	s of Structur ns in Solutio ons, by C.F.J ones, Tutori ?v=dFfv_jC3 uspx?Id=388 /10.1007/978	re and Ream n – An Intr Basolo and al Chemist 3_ZY 3-94-011-0 Course	ctivity", J. roduction", R.G.Pearso ry Texts, E 255-1_17 Articulatio	E. Huheey D. Benson on, Wiley, J. W. Abel (m Matrix: PO6 2	r, E. A. Ke n, McGraw New York. (Ed.), Roya (Mapping	-Hill. 1 Society of of COs with PO8 3	f Chemistry	y, Cambridge d PSOs)	e. PSO3 3	PSO4 3	
Inorgania New Yor Mechani d- and f- e-Learni https://w https://br https://lin PO-PSC CO	c Chemistry – rk. sm of Inorgan sms of Inorgan block Chemis ing Source: ww.youtube.c nmu.ac.in/Deta nk.springer.com PO1 3 3 3	ic Reaction nic Reaction try, C. J. J om/watch ⁴ ailOnline.a m/chapter/ PO2	s of Structur ns in Solutio ons, by C.F.1 ones, Tutori ?v=dFfv_jC3 ispx?Id=388 /10.1007/978 PO3	re and Ream n – An Intr Basolo and al Chemist 3_ZY 3-94-011-0 Course 2 PO4	ctivity", J. roduction", R.G.Pearso ry Texts, E 255-1_17 Articulatic PO5	E. Huheey D. Benson on, Wiley, . W. Abel (on Matrix: PO6 2 2	r, E. A. Ke n, McGraw New York. (Ed.), Roya (Mapping PO7	-Hill. 1 Society o of COs wi PO8 3 3	f Chemistry ith POs an PSO1 3 2	y, Cambridge d PSOs) PSO2	PSO3 3 3	PSO4 3 3	PSO5
Inorgania New Yor Mechani d- and f- e-Learni https://w https://br https://lin PO-PSC CO CO1	c Chemistry – rk. sm of Inorgan sms of Inorgan block Chemis ing Source: ww.youtube.co nmu.ac.in/Deta nk.springer.com PO1 3 3 3 3	ic Reaction nic Reaction try, C. J. J om/watch ⁴ ailOnline.a m/chapter/ PO2	s of Structur ns in Solutio ons, by C.F.J ones, Tutori ?v=dFfv_jC3 uspx?Id=388 (10.1007/978 PO3 -	re and Reamin – An Intra Basolo and al Chemist 3_ZY 3-94-011-0 Course PO4 -	ctivity", J. roduction", R.G.Pearso ry Texts, E 255-1_17 Articulatio PO5 -	E. Huheey D. Benson on, Wiley, J. W. Abel (m Matrix: PO6 2 2 2 2	r, E. A. Ke a, McGraw New York. (Ed.), Roya (Mapping P07 -	-Hill. 1 Society of of COs with PO8 3 3 3	f Chemistr ith POs an PSO1 3 2 3	y, Cambridge d PSOs) PSO2 -	PSO3 3 3 3 3	PSO4 3 3 2	PSO5
Inorganio New Yor Mechani d- and f- e-Learni https://w https://br https://lin PO-PSC CO CO1 CO2	c Chemistry – rk. sm of Inorgan sms of Inorgan block Chemis ing Source: ww.youtube.c nmu.ac.in/Deta nk.springer.com PO1 3 3 3	ic Reaction nic Reaction try, C. J. J om/watch ⁴ ailOnline.a m/chapter/ PO2	s of Structur ns in Solutio ons, by C.F.J ones, Tutori 2v=dFfv_jC3 ispx?Id=388 (10.1007/978 PO3 - -	re and Ream n – An Intr Basolo and al Chemist 3_ZY 3-94-011-0 Course PO4 - -	ctivity", J. roduction", R.G.Pearss ry Texts, E 255-1_17 Articulatic PO5 - -	E. Huheey D. Benson on, Wiley, . W. Abel (on Matrix: PO6 2 2	, E. A. Ke , McGraw New York. (Mapping PO7 - -	-Hill. 1 Society o of COs wi PO8 3 3	f Chemistry ith POs an PSO1 3 2	y, Cambridge d PSOs) PSO2 -	PSO3 3 3	PSO4 3 3	PSO5

|--|

Effective from Sessio	n: 2019-2020						
Course Code	CH516	Title of the Course	Quantum Chemistry: A Molecular Approach	L	Т	Р	С
Year	Second	Semester	Third	3	1	0	4
Pre-Requisite	B.Sc. with Chemistry	Co-requisite	Elementary Mathematics				
Course Objectives	well as chemical reactive hands-on experience. The	ity. It introduces the mat ne main objective of com	as a tool to understand atomic and molecular structu hematical foundations of a variety of wave function putational chemistry is to solve chemical problems r to provide reliable, accurate and comprehensive in	s as w by sin	ell as nulatin	a prac g chei	ctical, mical

Coto electron spin and photom polarization. The second problems in more than one dimension and to understand the role of degenerac occurrence of electron shell structure in atoms. Coto To understand analysis of indeterminate structures and adopt an appropriate structural analysis technique Contact Hist Contact Contact Contact Contact Contact Contact Contact Hist Contact Contact </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>outcomes</th> <th>Course (</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							outcomes	Course (
Solve the time dependent Schrödinger-equation for discrete two-level systems and being able to apply this to simple problems involvelectron spin and photop polarization. COO Solve the time dependent Schrödinger-equation for discrete two-level systems and being able to apply this to simple problems involvelectron spin and photop polarization. COO To understand analysis of indeterminate structures and adopt an appropriate structural analysis technique Unit Tide of the Unit Content of Unit Content of Unit Content filts. International mathysis of indeterminate structures and adopt an appropriate structural analysis technique Content of Unit Content filts. International mathysis of indeterminate structures and adopt an appropriate structural analysis technique Content of Unit Content filts. International mathysis of indeterminate structures and adopt an appropriate structural analysis technique International mathysis of indeterminate structures of matrix, (identity matrix) 2x,2,2x,3x,3), 8 Content filts. Content of Unit Content of Unit Content of Unit 2 Internation Black-body radiation, Planck-ks radius fundation, Planck-ks radius fundation, Planck-ks radiu fundation, Planck radiu probability density, Angular momentum in operator, Time dependent and time independent Schrödin more, paperator, Contentate									e problems	to solve th	of matrices	knowledge	Apply the	CO1	
Content of prima and photom polarization. Content of the technique of separation of variables to solve problems in more than one dimension and to understand the role of degenerad courrence of electron shell structure in atoms. Content of Unit Content of Unit Content of Unit Content of Unit Content of Unit Content of Unit Content of Unit Content of Unit Content of Unit Content of Hrs. Content of Unit Content of Unit Content of Unit Content of Units Introductory Matrices (2x2, 3x3) only. Multiplication, inverse of matrix, (identity matrix) 2x2, 2x33, 3x3, 1, 8 Concept Content of Units Content of Units Content of Units A matrices, compton refers, (ax, cosx, ln(1+x), ln(1+x), sitiling approximation. Solution of verall solution and its inportaviano heris oslution of verall solution and its inportaviano heris oslution of verall solution and its inportaviano heris oslution of verall solution and its inportaviano heris oscillator. Rigit rotor. Content of Mare matrices, compton effect, deal spane"2 A provintion Mechanics (La, Ly, La, La, La, La, La, La, La, La, La, La								echanics.	Quantum M	d ideas of (concepts an	the basic	Understand	CO2	
CODE Apply the technique of separation of variables to solve problems in more than one dimension and to understand the role of degenerac occurrence of electron shell structure in atoms. COD To understand analysis of indeterminate structures and adopt an appropriate structural analysis technique Unit No. Title of the Unit Content of Unit Content of Unit Content of Unit 1 Elementary Mathematical Concept Matrices (2x2, 3x3) only, Multiplication, inverse of matrix, (identity matrix) 2x2, 2x3,3x3). 8 2 Introductory Quantum Mechanics Matrices (2x2, 3x3) only, Multiplication, inverse of matrix, (identity matrix) 2x2, 2x3,3x3). 8 3 Introductory Quantum Mechanics Black-body radiation. Planck's radiation hav, photolectric effect, heat capacity of solids, defeate, Compton effect, de-Broglie's hypothesis, the Heisenberg's uncertainty principle, Hamiltonian Operator. 8 4 Flementary Quantum Mechanics-I Postulates of quantum mechanics, Eigen value equations & function, concept of Wave function, normalization ad orthogonalization of wave function, radial node, wave function and shape of orbital, radial probability density. Angular momentum in perator. Commutation of operators. Time dependent Schrödinger wave equation and theory (first order and non-degenerat). Applications of variation method and pertubation theory of the Hydrogen atom. Molecular Obital Theory Huckel theory of conjugated systems, Bond order and non-degenerat). Applications of variation method and pertubation theory (first order and non-degene												CO3			
Unit No.Title of the UnitContent of Uni	Apply the technique of separation of variables to solve problems in more than one dimension and to understand the role of degeneracy in the											CO4			
No. Production of the origination origination of the origination originatin the oricorin the originatindithe origination originating the	To understand analysis of indeterminate structures and adopt an appropriate structural analysis technique											CO5			
1 Mathematical Concept commutative properties of matrices, complex number Z and is complex conjugat Z*, Expansion of series [ex, sinx, cosx, ln(1+x), ln(1+x), linfing approximation. 8 2 Introductory Quantum Mechanics Black-body radiation, Planck's radiation law, photoelectric effect, heat capacity of solids, Bohr's model of hydrogen atom (without derivation) their solution of overall solution and its defects, Compton effect, de-Broglie's hypothesis, the Heisenberg's uncertainty principle, Hamiltonian Operator. 8 3 Quantum Mechanics-I Postulates of quantum mechanics, Eigen value equations & function, concept of Wave function, normalization and orthogonalization of wave function. Quantum mechanical operator, commutation of operators, Time dependent and time independent Schrödinger wave equation and its importance. 8 4 Quantum Mechanics-II Particle in a one dimensional box, physical interpretation of the wave function, radial node, wave function and shape of orbital, radial probability density, Angular momentum in quantum mechanics (Lx, Ly, Lz). Harmonic oscillator, Rigid rotor. 8 5 Approximation Methods The variation theorem, Perturbation theory of the Hydrogen atom. Molecular Orbital Theory huckel theory of conjugated systems, Bond order and charge density calculations, Applications to ethylene, butadiene, cyclopurpentyl radic, cyclobutadiene etc. 8 Reference Books: Physical Chemistry, P.W. Atkins, Oxford Press. 7thEdn. Introductory of Mathylocs07 Hyblox/ Huckel theory of conjugated systems,	Mapped CO														
2 Introductory Quantum Mechanics Black-body radiation, Planck's radiation law, photoelectic effect, heat capacity of solids, Bahr's model of hydrogen atom (without derivation) their solution of overall solution and its defects. Compton effect, de-Broglie's hydrobesis, the Heisenberg's uncertaint solution of overall solution and its defects. Compton effect, de-Broglie's hydrobesis, the Heisenberg's uncertaint solution of wave function, concept of Wave function, normalization and orthogonalization of wave function, Quantum mechanical operator, commutation of operators, Time dependent and time independent Schrödinger Wave equation and its importance. 8 4 Elementary Quantum Mechanics-I Particle in a one dimensional box, physical interpretation of the wave function, radial node, wave equation and shape of orbital, radial probability density, Angular momentum in quantum mechanics (Ls, Ly, Lz, L, Harmonic oscillator, Rigid rotor. 8 5 Approximation Methods The variation theorem, Perturbation theory (first order and non- degenerate). Applications of variation method and pertubation theory of the Hydrogen atom. Molecular Orbital Theory Huckel theory of conjugated systems, Bond order and charge density calculations of Applications to ethylene, butadiene, cyclopropenyl radical, cyclobutadiene etc. 8 Introductive Roteinstry, Fa N. Levine, Prentice Hall. Moathury Hydrogen atom workel websity. Nethods Hydrogen atom. Molecular Orbital Theory Huckel theory of conjugated systems, Bond order and charge density calculations Applications to ethylene Batter Hydrogen atom. 8 Introductive Roteinstry, Fa N. Levine, Prentice Hall.	1	8		x conjugate	its comple	er Z and	plex numb	trices, con	ties of ma	tive proper	commuta	natical	Mathen	1	
3 Definitionalization and orthogonalization of wave function, Quantum mechanical operator, commutation of operators, Time dependent and time independent Schrödinger wave equation and its importance. 8 4 Quantum Mechanics-II Particle in a one dimensional box, physical interpretation of the wave function, radial node, quantum mechanics (Lx, Ly, L), Harmonic oscillator, Rigid rotor. 8 5 Approximation Mechanics-II The variation theorem, Perturbation theory (first order and non- degenerate). Applications of variation method and pertubation theory of the Hydrogen atom. Molecular Orbital Theory Huckel theory of conjugated systems. Bond order and charge density calculations. Applications to ethylene, butadiene, cyclopropenyl radical, cyclobutadiene etc. 8 Reference Books: Physical Chemistry, P.W. Atkins, Oxford Press. 7thEdn. Introduction to Quantum Chemistry, Ira N. Levine, Prentice Hall. Modern Spectroscopy, J.M. Hollas, John Wiley. statistic State S	2	8	d its	pacity of solution a	ct, heat ca n of overal	lectric effe neir solutio	aw, photoe erivation) t	radiation 1 (without d	n, Planck's rogen atom ffect, de-B	dy radiation odel of hyd Compton e	Black-bo Bohr's me defects,	tum	Quan	2	
4Quantum Mechanics-IIwave function and shape of orbital, radial probability density, Angular momentum in quantum mechanics (Lx, Ly, Lz), Harmonic oscillator, Rigid rotor.85Approximation MethodsThe variation theorem, Perturbation theory of the Hydrogen atom. Molecular Orbital Theory Huckel theory of conjugated systems, Bond order and charge density calculations, Applications to ethylene, butadiene, cyclopropenyl radical, cyclobutadiene etc.8Reference Books:Physical Chemistry, P.W. Atkins, Oxford Press. 7thEdn.Introduction to cuantum Chemistry, A.K. Chandra, Tata McGraw Hill.Quantum Chemistry, Ix N. Levine, Prentice Hall. Modern Spectroscopy, J.M. Hollas, John Wiley.Output the systems Source:Physical chemistry, P.W. Atkins, Oxford Press. 7thEdn.Introduction to cuantum Chemistry, A.K. Chandra, Tata McGraw Hill.Quantum Chemistry, Ix N. Levine, Prentice Hall. Modern Spectroscopy, J.M. Hollas, John Wiley.Output the system Spectroscopy, J.M. Hollas, John Wiley.Potemistry, Set Spectroscopy, J.M. Hollas, John Wiley.Physical chemistry, Press Orgits/T2VLUCourse Articulation Matrix: (Mapping of COs with POs and PSOs)Potemistry, PoilPotemistry, Press Press Proteore Proteo	3	8	nical nger	tum mecha lent Schröd	ion, Quan e independ	vave funct nt and time	zation of w e depender	orthogonaliz ators, Tim ce.	tion and c on of oper s importance	normaliza commutati ation and it	function, operator, wave equ	tum	Quan	3	
5Approximation Methodsvariation method and pertubation theory of the Hydrogen atom. Molecular Orbital Theory Huckel theory of conjugated systems, Bond order and charge density calculations, Applications to ethylene, butadiene, cyclopropenyl radical, cyclobutadiene etc.8Reference Books:Physical Chemistry, P.W. Atkins, Oxford Press. 7thEdn.Introduction to Quantum Chemistry, A.K. Chandra, Tata McGraw Hill.Quantum Chemistry, Ira N. Levine, Prentice Hall.Modern Spectroscopy, J.M. Hollas, John Wiley.e-Learning Source:Introduction to com/watch?v=8JF6lvPBAzkhttps://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:matrices/x9e81a4f98389efdf:mat-intro/a/intro-to-matriceshttps://www.youtube.com/watch?v=8JF6lvPBAzkhttps://www.youtube.com/watch?v=8JF6lvPBAzkhttps://www.youtube.com/watch?v=8JF6lvPBAzkhttps://www.youtube.com/watch?v=8JF6lvPBAzkhttps://www.youtube.com/watch?v=8JF6lvPBAzkhttps://www.youtube.com/watch?v=8JF6lvPBAzkhttps://www.youtube.com/watch?v=8JF6lvPBAzkNotores Articulation Matrix: (Mapping of COs with POs and PSO)PO-FSO COPO-1PO-1PO-1PO-1PO-1PO-1PO-1PO-1PO-1PO-1PO-1PO-1 <td cols<="" td=""><td>4</td><td>8</td><td>n in</td><td>r momentu</td><td>ty, Angula r.</td><td>ility densit Rigid roto</td><td>lial probab c oscillator,</td><td>orbital, rad), Harmoni</td><td>shape of (Lx, Ly, Lz</td><td>nction and mechanics</td><td>wave fur quantum</td><td>tum</td><td>Quan</td><td>4</td></td>	<td>4</td> <td>8</td> <td>n in</td> <td>r momentu</td> <td>ty, Angula r.</td> <td>ility densit Rigid roto</td> <td>lial probab c oscillator,</td> <td>orbital, rad), Harmoni</td> <td>shape of (Lx, Ly, Lz</td> <td>nction and mechanics</td> <td>wave fur quantum</td> <td>tum</td> <td>Quan</td> <td>4</td>	4	8	n in	r momentu	ty, Angula r.	ility densit Rigid roto	lial probab c oscillator,	orbital, rad), Harmoni	shape of (Lx, Ly, Lz	nction and mechanics	wave fur quantum	tum	Quan	4
Reference Books: Physical Chemistry, P.W. Atkins, Oxford Press. 7thEdn. Introduction to Quantum Chemistry, A.K. Chandra, Tata McGraw Hill. Quantum Chemistry, Ira N. Levine, Prentice Hall. Modern Spectroscopy, J.M. Hollas, John Wiley.	5	8	eory	r Orbital Tl ity calculat	. Molecular arge dens	ogen atom er and ch	of the Hydr Bond ord	on theory of systems,	d pertubati conjugated	method an theory of	variation Huckel 1			5	
Introduction to Quantum Chemistry, A.K. Chandra, Tata McGraw Hill. Quantum Chemistry, Ira N. Levine, Prentice Hall. Modern Spectroscopy, J.M. Hollas, John Wiley. e-Learning Source: https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:matrices/x9e81a4f98389efdf:mat-intro/a/intro-to-matrices https://www.youtube.com/watch?v=8JF6lvPBAzk https://www.youtube.com/watch?v=8JF6lvPBAzk https://www.youtube.com/watch?v=8JF6lvPBAzk Not Courses/noc17/SEM1/noc17-ph03/ https://www.youtube.com/watch?v=SQmj5jT2VLU Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PSO1 PSO2 PSO3 PSO4 CO2 3 1 - - 1 1 3 3 1 2 3 CO1 3 1 - - 2 1 3 3 1 2 2 CO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01							<u></u>	<u>, -)</u> r	,	<u> </u>	<u> </u>		ce Books:	Referen	
Quantum Chemistry, Ira N. Levine, Prentice Hall. Modern Spectroscopy, J.M. Hollas, John Wiley. e-Learning Source: https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:matrices/x9e81a4f98389efdf:mat-intro/a/intro-to-matrices https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:matrices/x9e81a4f98389efdf:mat-intro/a/intro-to-matrices https://www.youtube.com/watch?v=8JF6lvPBAzk https://www.youtube.com/watch?v=8Qmj5jT2VLU Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PSO1 PSO2 PSO3 PSO4 Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PSO1 PSO2 PSO3 PSO4 Course Articulation Matrix: (Mapping of COs with POs and PSOs) Course Articulation Matrix: (Mapping of COs with POs and PSOs) Course Articulation Matrix: (Mapping of COS with POs and PSOs) CO1 3 1 - - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>n.</td> <td>ress. 7thEc</td> <td>s, Oxford F</td> <td>P.W. Atkin</td> <td>Chemistry,</td> <td>Physical</td>									n.	ress. 7thEc	s, Oxford F	P.W. Atkin	Chemistry,	Physical	
Modern Spectroscopy, J.M. Hollas, John Wiley. e-Learning Source: https://www.khanacademy.org/math/precaluls/x9e81a4f98389efdf:matrices/x9e81a4f98389efdf:matriceto-matrices/ https://www.youtube.com/watch?v=8JF6lvPBAzk https://nptel.ac.in/noc/courses/noc17/SEM1/noc17-ph03/ https://www.youtube.com/watch?v=8Qmj5jT2VLU PO-PSO PO1 PO2 PO3 PO4 PO6 PO7 PO8 PS02 PS03 PS04 PO-PSO PO1 PO2 PO3 PO4 PO6 PO7 PO8 PS03 PS04 Out Out PCS PO-PSO PO1 PS03 PS04 PS03 PS04 PO3 PS04 PO1 PS03 PS03 PS03 PS03 PS04 PS03 PS04 PS03 PS04 PS03 <th cols<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7 Hill.</td><td>ata McGrav</td><td>Chandra, Ta</td><td>stry, A.K.</td><td>tum Chemi</td><td>tion to Quan</td><td>Introduct</td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7 Hill.</td> <td>ata McGrav</td> <td>Chandra, Ta</td> <td>stry, A.K.</td> <td>tum Chemi</td> <td>tion to Quan</td> <td>Introduct</td>								7 Hill.	ata McGrav	Chandra, Ta	stry, A.K.	tum Chemi	tion to Quan	Introduct
e-Learning Source: https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:matrices/x9e81a4f98389efdf:mat-intro/a/intro-to-matrices https://www.youtube.com/watch?v=8JF6lvPBAzk https://nptel.ac.in/noc/courses/noc17/SEM1/noc17-ph03/ https://www.youtube.com/watch?v=8Qmj5jT2VLU Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 PS02 PS03 PS04 Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 PS02 PS03 PS04 Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 PS02 PS03 PS04 GO2 3 1 - - 2 1 3 3 1 2 2 GO3 3 1 <td></td>															
https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:matrices/x9e81a4f98389efdf:mat-intro/a/intro-to-matrices https://www.youtube.com/watch?v=8JF6lvPBAzk https://nptel.ac.in/noc/courses/noc17/SEM1/noc17-ph03/ https://www.youtube.com/watch?v=8JF6lvPBAzk https://www.youtube.com/watch?v=8Jmj5jT2VLU PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS03 PS04 Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS03 PS04 CO1 3 1 1 1 2 CO1 3 1 - CO2 3 1 1 3 3 3 3 3 3 3										/iley.	las, John W	y, J.M. Hol	· · · ·		
Interview in the control of the second watch?v=8JF6lvPBAzk https://www.youtube.com/watch?v=8JF6lvPBAzk https://nptel.ac.in/noc/courses/noc17/SEM1/noc17-ph03/ https://www.youtube.com/watch?v=SQmj5jT2VLU Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 PS02 PS03 PS04 CO1 3 1 - - 1 1 3 3 1 2 3 CO3 3 1 - - 2 1 3 3 1 2 2 CO4 3 1 - - 2 1 3 3 1 2 2 CO4 3 1 - - 2 1 3 3 1 2 2 CO4 3 1 - - 2 1 3 3 1 2 2 CO4 3 <th co<="" td=""><td></td><td></td><td>rices</td><td>/intro_to_ma</td><td>mat_intro/a</td><td>98380efdf.</td><td>s/vQe81a/f</td><td>fdf:matrice</td><td>1a/f08380e</td><td>culus/v0e8</td><td>nath/precal</td><td>demy org/r</td><td></td><td></td></th>	<td></td> <td></td> <td>rices</td> <td>/intro_to_ma</td> <td>mat_intro/a</td> <td>98380efdf.</td> <td>s/vQe81a/f</td> <td>fdf:matrice</td> <td>1a/f08380e</td> <td>culus/v0e8</td> <td>nath/precal</td> <td>demy org/r</td> <td></td> <td></td>			rices	/intro_to_ma	mat_intro/a	98380efdf.	s/vQe81a/f	fdf:matrice	1a/f08380e	culus/v0e8	nath/precal	demy org/r		
https://nptel.ac.in/noc/courses/noc17/SEM1/noc17-ph03/ https://www.youtube.com/watch?v=SQmj5jT2VLU Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 PS02 PS03 PS04 CO1 3 1 - - 1 1 3 3 1 2 3 CO2 3 1 - - 2 1 3 3 1 2 2 CO3 3 1 - - 2 1 3 3 1 2 2 CO4 3 1 - - 2 1 3 3 1 2 2 CO3 3 1 - - 2 1 3 3 1 2 2 CO4 3 1 - - 2 1 3 3 1 2 2				11110-10-1110	mat-mu 0/ a	/050/0101.1	3/ X)C010+1	iur.matrice	14-1705070		<u> </u>			<u> </u>	
https://www.youtube.com/watch?v=SQmj5jT2VLU Course Articulation Matrix: (Mapping of COs with POs and PSOs) PO-PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 PS02 PS03 PS04 CO1 3 1 - - 1 1 3 3 1 2 3 CO2 3 1 - - 2 1 3 3 1 2 2 CO3 3 1 - - 2 1 3 3 1 2 2 CO4 3 1 - - 2 1 3 3 1 2 2 CO3 3 1 - - 2 1 3 3 1 2 2 CO4 3 1 - - 2 1 3 3 1 2 2)3/				-	-	
PO-PSO CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 PS02 PS03 PS04 C01 3 1 - - 1 1 3 3 1 2 3 C02 3 1 - - 2 1 3 3 1 2 2 C03 3 1 - - 2 1 3 3 1 2 2 C04 3 1 - - 2 1 3 3 1 2 2															
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PS01 PS02 PS03 PS04 CO1 3 1 - - 1 1 3 3 1 2 3 CO2 3 1 - - - 2 1 3 3 1 2 2 CO3 3 1 - - 2 1 3 3 1 2 2 CO4 3 1 - - 2 1 3 3 1 2 2	r			l PSOs)	th POs and	of COs wi	(Mapping	on Matrix:	Articulatio	Course	1	T			
CO1 3 1 - - 1 1 3 3 1 2 3 CO2 3 1 - - 1 1 3 3 1 2 3 CO2 3 1 - - 2 1 3 3 1 2 2 CO3 3 1 - - 2 1 3 3 1 2 2 CO4 3 1 - - 2 1 3 3 1 2 2	PSO5	PSO4	PSO3	PSO2	PSO1	PO8	PO7	PO6	PO5	PO4	PO3	PO2	PO1		
CO2 3 1 - - 2 1 3 3 1 2 2 CO3 3 1 - - - 2 1 3 3 1 2 2 CO3 3 1 - - - 2 1 3 3 1 2 2 CO4 3 1 - - - 2 1 3 3 1 2 2	2	3	2	1	3	3	1	1	-	-	-	1	3		
CO4 3 1 - - 2 1 3 3 1 2 2	3								-	-	-				
	2	2	2	1	3	3	1	2	-	-	-	1	3	CO3	
	2	2	2	1	3	3	1	2	-	-	-	1	3	CO4	
	3	2	2	1	3	3	1	2	-	-	-	1	3	CO5	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2023-24										
Course Code	CH506	Title of the Course	Bioinorganic And Supramolecular Chemistry	L	Т	Р	С			
Year	Second	Semester	Third	3	1	0	4			
Pre-Requisite	B.Sc. Chemistry	Co-requisite								
Course Objectives	compounds, use of		of the chemistry of d-block metals in metalloproteins and a adamentals of molecular recognition, interactions responsibility apramolecular devices.							

	Course Outcomes
CO1	Student would be able to understand the role of metal ions in biological system.
CO2	Students evaluate fundamentals of enzyme reactions and metalloenzymes.
CO3	Students would develop the concept of metal acid reactions, metals used in diagnosis and administration of drugs.
CO4	Students would restate difference between different modes of molecular reactions.
CO5	Students would able to apply the concepts of supramolecular chemistry.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Metal ions in Biological functions	A brief introduction to bio-inorganic chemistry. Essential and trace metal ions in biological systems with special reference to Na^+ , K^+ and Mg^{2+} ions: Na/K pump; Role of Mg^{2+} ions in energy production. Role of Ca2+ in blood clotting, stabilization of protein structures and structural role (bones).	8	1				
2	Metalloenzymes	Enzyme, coenzyme, apoenzyme and holoenzyme, Zinc enzymes: carboxypeptidase, carbonic anhydrase and alcohol dehydrogenase. Iron enzymes-catalase and peroxidase. Copper enzymes -superoxide dismutase. Molybdenum enzymes –xanthine oxidase.	8	2				
3	Metal-Nucleic Acid Interactions	Metal ions and metal complex interactions,-nucleic acids. Metal deficiency and disease, toxic effects of metals, metals used for diagnosis and chemotherapy with particular reference to anticancer drugs. cis-platin, indication and contra indications. Administration of drug and its antidote, use of antihistamine, mannitol, epinephrine and steroid	8	3				
4	Supramolecular Concepts and language. Molecular recognition, principle, molecular receptors for different							
5	Applications of Supramolecular Species/Compounds	Supramolecular reactivity and catalysis, Transport processes and carrier design, Supramolecular devices: electronic, ionic, switching and light conversion devices, Some example of self-assembly in supramolecular chemistry.	8	5				
	ce Books:							
		by J.D. Lee Edition III Compton Printing Ltd London. try, Stephen J. Lippard & Jeremy M. Berg, University Science Books.						
		Chemistry, Ajay Kumar Bhagi and G. R. Chatwal, First Edition, Himalaya Publishing House						
		ramolecular Chemistry, P.S. Kalsi and J.P. Kalsi, Fourth Edition, New Age International Publishe	re					
ě –		blogy and Clinical Chemistry, Trevor Palmer and Philip L. Bonner Second Edition, Woodhead Pu						
		pts & Perspectives, Lehn, J. M. Print ISBN:9783527293124 Wiley-VCH (2006).	lonsning					
•	ing Source:	pis de l'elspectives, Echn, s. M. Finit ISBN 765527275724 Wiley Ven (2000).						
	0	ses/noc19/SEM2/noc19-cy27/						
	.	es/video/104104/L01.html						
	ww.youtube.com/watch?v							
nups.//w	www.youtube.com/watch?v	-nawonjiprzo						

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	1	2	1	-	1	1	2	2	1	2	2	2
CO2	2	1	1	1	-	1	1	2	2	1	2	2	2
CO3	2	1	2	-	1	1	2	2	2	1	2	2	2
CO4	3	1	3	-	-	1	2	3	2	2	3	1	3
CO5	3	1	1	-	1	1	2	3	2	1	2	1	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Session:2015-16										
Course Code	CH517	Title of the Course	Chemistry Lab Practicals-3	L	Т	Р	С			
Year	Second	Semester	Third	0	0	8	4			
Pre-Requisite	BSc. with Chemistry	Co-requisite								
Course Objectives	 Developmer Ability to we Developing 									

	Course Outcomes
CO1	Preparation of polymers.
CO2	Preparation of cosmetic products.
CO3	Estimation of key ingredients present in cosmetic products.
CO4	Analysis of food samples.
CO5	Estimation of food samples.

Exp. No.	Title of the Experim	nent	Content of unit									Mapped CO
1	Phenol formaldehyde	resin.	Preparation of Phenol formaldehyde resin.									1
2	Urea formaldehyde res	sin.	Preparatio	on of Urea f		4	1					
3	Nylon 66.		Preparatio	on of Nylon		4	1					
4	Dibenzal acetone		Synthesis	of Dibenza	l acetone f	rom benzal	dehyde.				2	2
5	p-chlorotoluene		Sandmeye	er reaction:	p-chloroto	luene from	p-toluidine	.			2	2
6	Hydrolysis		Compare methyl ac		n of HCl ar	nd H ₂ SO ₄ by	studying	the rate of l	nydrolysis o	f	2	3
7	Sugar/glucose		Determina	ation of sug	gar/glucose	content in	the given s	ample of fo	od.		2	3
8	Ascorbic acid		Estimatio	n of ascorb	ic acid in tl	he given fru	it juice.				4	3
9	Cobalt (II) Chloride C	omplex		bserve the effect of (Temperature) on equilibrium systems on Cobalt (II) hloride Complex								4
10	Solubility product			Co determine the solubility product for sparingly soluble salt (e.g. lead sulphate 2 or bariu Sulfate).								4
11	Effect of concentration	n				rpose of thi on) on equi			effect of		2	5
12	Equilibrium		The equili	brium betv	veen Fe3+	and Fe(CN	$(S)^{2+}$.				2	5
Reference l	Books:											
Advance Pr	actical Chemistry: Jagdan	nba Sing	gh, L.D.S Y	adav, Jaya	Singh, I.R	. Siddiqui,	Pragati Ed	ition.				
e-Learning	Source:											
0	u.be/r2LZxmLtdqU											
	ube.com/watch?v=q8IMK		feature=sl	are								
https://youtu.be/eA9I2MkWMW0												
https://youtu.be/gYg2sFqkptc												
ps#/ jour	and Bi Babi dubie		Course	Articulatio	on Matrix:	(Mapping	of COs w	ith POs an	d PSOs)			
PO-PSO	PO1 PO2	PO3	Course Articulation Matrix: (Mapping of COs with POs and PSOs)PO4PO5PO6PO7PO8PS01PSO2PS02						PSO3	PSO4	PSO5	
CO												

_														
			Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
_	PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
	CO1	3	1	-	-	1	3	2	3	3	2	2	2	2
	CO2	3	1	-	-	1	2	3	3	3	2	2	2	2
	CO3	3	1	-	-	1	2	2	3	3	2	2	2	2
	CO4	3	1	-	-	1	3	2	3	3	2	2	2	2
	CO5	3	1	-	-	1	3	2	3	3	2	2	2	2

 -</t

Name & Sign of Program Coordinator	Sign & Seal of HoD

Department of Chemistry Study and Evaluation Scheme

Program: Master of Science (Chemistry)

Year: Second / Semester: Fourth

				Peri	od/ hr./	week	E	valuatio	on Sche	me					А	ttribut	es			able	
S. No	code	Course Title	Type of Paper	L	Т	Р	СА	ТА	Total	ESE	Subject Total	Total Credits	Employability	Entrepreneurship	Skill Development	Gender Equality	Environment & Sustainability		Professional Ethics	United Nations Sustainable Development	Goals(SDGs)
THE	ORIES													1	1			1	<u> </u>		
1.		Molecular Spectroscopy and Spectral Techniques	Core	03	01	00	40	20	60	40	100	4	~					~	~	-	-
2.	CH509	Green Chemistry	Elective	02	01		10	20	(0)	10	100		~	~	~		*			Climate Action	13 CLIMATE
3.	CH519	Computational Methods in Chemistry	Elective	03	01	00	40	20	60	40	100	4	~	~	~		~	~	~	Good Health and Well-being	3 GOOD HEALTH AND WELL-BEING
4.	CH520) Seminar Core		00	00	04	00	00	00	100	100	2			~				~	-	-
5.	*CH521	1 Project Training and Evaluation Core		00	00	00	00	00	00	300	300	10	~	~	~		✓	~	~	-	-
	•		Total	06	02	04	80	40	120	480	600	20		•	•			•			

L = Lecture, T = Tutorial, P = Practical, CA = Continuous Assessment, TA = Teacher's Assessment, ESE = End Semester Examination; Sessional = CT+TA; Subject Total = Sessional + ESE

* The Evaluation scheme for the Industrial Training:

Course Title	Course Code	Dissertation	Presentation	Viva/Discussion	Total
Project Training and Evaluation	CH521	200	50	50	300

Effective from Sessio	on: 2019-2020								
Course Code	CH518	Title of the Course	Molecular Spectroscopy And Spectral Techniques	L	Т	Р	С		
Year	Second	Semester	Fourth	3	1	0	4		
Pre-Requisite	B.Sc. with Chemistry	Co-requisite	Elementary Physics						
Course Objectives		The main aim of this course is to provide students a concept about how to commonly used molecular spectroscopy techniques work, a theoretical knowledge of each of these methods and their usage in molecular and electronic structure determination.							

	Course Outcomes
CO1	To understand the significance of group theory for chemistry, which allow the prediction of many molecular properties.
CO2	Can explain vibrating diatomic molecule, energy levels of a diatomic molecule, simple harmonic and anharmonic oscillator, Scattering of light
02	and Raman Spectrum. rotational and vibrational Raman Spectra and PQR branches.
CO3	Understand rotational spectra of rigid diatomic molecules, selection rules, interaction of spectral lines.
CO4	To learn Basic principles, Zero field splitting and Kramer's degeneracy, Factors affecting the 'g' value, hyperfine coupling constants, hyperfine
04	splitting, Spin, Hamiltonian, Measurement techniques.
CO5	Students will be able to understand the basics of Mossbauer/NRF spectroscopy.

Unit No.	Title of t	ne Unit					ent of Uni					Contact Hrs.	Mapped CO	
1	Concept o theory in C		between o symmetry	Symmetry elements and symmetry operation, definitions of group, subgroup, relation between orders of a finite group and its subgroup. Conjugacy relation and classes. Point symmetry group. Schonflies symbols, representations of groups: Cn, Cnv, Cnh, Dnh etc. Character table										
2	Vibrati Spectro		rules, pure relation of spectrum,	eview of linear harmonic oscillator, energy levels of simple harmonic oscillator, selection ales, pure vibrational spectrum, intensity, determination of force constant and qualitative elation of force constant and bond energies, effect of anharmonic motion and isotope on the bectrum, idea of vibrational frequencies of different functional groups., morse potential hergy diagram, Franck Condon Principle, vibrational-rotation spectroscopy, PQR branches.										
3	Rotati Spectro		principles) (Maxwell-	assification of molecules, rigid rotor model, energy levels of a rigid rotor (semi-classical inciples), selection rules, spectral intensity, distribution using population distribution flaxwell-Boltzmann distribution) determination of bond length, qualitative description of n-rigid rotor, isotope effect, stark effect and applications										
4	Electror Resona Spectro	ance	hyperfine	coupling	constants,	hyperfin	e splitting	, Spin, F	Iamiltoniar	ing the 'g' v , Measure		8	4	
5	Mossb Spectro	auer	Basic prin splitting, studies of	techniques, calculation of number of signal, degeneracy, Applications. Basic principles of Mossbauer/ NRF spectroscopy, Isomer shift and nuclear Zeeman splitting, spectral parameters and spectrum display. Application of the technique to the studies of (1) bonding and structures of Fe2+ and Fe3+ compounds including those of intermediate spin, (2) Sn2+ and Sn4+ compounds-nature of M-L bond, coordination number, structure									5	
Referen	ce Books:													
Physical	Chemistry, I	P.W. Atkin	s, ELBS											
Quantun	n Chemistry,	By I.R.N.	Levine, Priv	atice, Hall	of India Lt	d.								
Quantun	n Chemistry,	By R.K. P	rasad, new a	ge Internat	ional.									
Banwell	C. N.; McCa	sh, E. M.,	Fundamenta	ls of Moleo	cular Spect	roscopy, 4t	h Ed., Tata	McGraw H	Iill, New D	elhi (2017)	•			
e-Learn	ing Source:													
https://w	ww.youtube.	com/watch	n?v=WukUv	N721Ag										
https://st	tudy.com/aca	demy/lesso	on/vibrationa	al-spectrosc	opy-defini	tion-types.l	ntml							
https://w	ww.youtube.	com/watch	n?v=dU38K	-5-j1g										
https://w	ww.youtube.	com/watch	n?v=eZ-Vnj)sS2M										
				Course	Articulatio	on Matrix:	(Mapping	of COs wi	th POs an	d PSOs)				
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	
C01	3	1	-	-	-	3	1	3	3	1	3	3	2	
CO2	3	1	-	-	-	3	3	3	3	3	3	3	3	
CO3	3	1	-	-	-	3	2	3	3	3	3	3	2	
CO4	3	1	-	-	-	3	2	3	3	3	3	3	2	
CO5	3	1	-	-	-	3	2	3	3	3	3	3	3	
	•	•	1- Low	Correlation	: 2- Mode	rate Corre	lation: 3-	Substantia	l Correlati	on		•	•	

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Sessio	n: 2019-2020									
Course Code	CH509	09 Title of the Course Green Chemistry L T P								
Year	Second	Semester	Fourth	3	1	0	4			
Pre-Requisite	BSc. with Chemistry									
Course Objectives	instrumentation tech (composition, structu	niques for the measure re, etc.). After successfu	dents of chemistry and industrial chemistry as a broad base i ement of different chemical and physical properties of co ally completion of course, the student will able understand the chniques as well as their operation.	mpour	nds an	d mate	erials			

	Course Outcomes
CO1	Students would able to create new routes for the synthesis of useful compounds without consuming harmful solvents.
CO2	Students would be able to understand the principles of green chemistry
CO3	Students would able to apply the important tools for the synthesis of useful compounds without harming of environment.
CO4	Students would restate difference between different modes of chromatographic separation; apply knowledge of qualitative and quantitative analysis in various fields of chemical, pharmaceutical industry etc.
CO5	Students would able to illustrate the future of green chemistry

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction	Definition and concept of Green Chemistry, Need for Green Chemistry, Goals of Green Chemistry, Emergence of green Chemistry, Limitations/Obstacles in the pursuit of the goals of Green Chemistry.	8	1
2	Principles of Green Chemistry and Designing a Chemical synthesis	Twelve principles of Green Chemistry with their explanations and examples; Designing a Green Synthesis using these principles; Prevention of Waste/byproducts; maximum incorporation of the materials used in the process into the final products (Atom Economy); prevention/minimization of hazardous/toxic products; designing safer chemicals different basic approaches to do so; selection of appropriate auxiliary substances (solvents, separation agents), green solvents, solventless processes, immobilized solvents and ionic liquids; energy requirements for reactions - use of microwaves, ultrasonic energy; selection of starting materials; avoidance of unnecessary derivatization careful use of blocking/protecting groups; use of catalytic reagents (wherever possible) in preference to stoichiometric reagents; designing of biodegradable products; prevention of chemical accidents; strengthening/development of analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes.	8	2
3	Green Synthesis/Reactions -I	1. Green Synthesis of the following compounds: adipic acid, catechol, BHT, methyl methacrylate, urethane, aromatic amines (4- aminodiphenylamine), benzyl bromide, acetaldehyde, disodium iminodiacetate (alternative to strecker synthesis), citral, ibuprofen, paracetamol, furfural.2. Microwave assisted reactions in water: Hofmann Elimination, Hydrolysis (of benzyl chloride, benzamide, n-phenyl benzamide, methylbenzoate to benzole acid), Oxidation (of toluene, alcohols). Microwave assisted reactions in organic solvents: Esterification, Fries rearrangement, Orthoester Claisen Rearrangement, Diels Alder Reaction, Decarboxylation. Microwave assisted solid state reactions: Deacetylation, Deprotection. Saponification of esters, Alkylation of reactive methylene compounds, reductions, synthesis of nitriles from aldehydes; anhydrides from dicarboxylic acid; pyrimidine and pyridine derivatives; 1,2-dihydrotriazine derivatives; benzimidazoles.	8	3
4	Green Synthesis/Reactions -II	1. Ultrasound assisted reactions: Esterification, saponification, substitution reactions, Alkylations, oxidation, reduction, coupling reaction, Cannizaro reaction, Strecker synthesis, Reformatsky reaction.2. Selective methylation of active methylene group using dimethylcarbonate: Solid-state polymerization of amorphous polymers using diphenylcarbonate; Use of "Clayan", a nonmetallic oxidative reagent for various reactions; Free Radical Bromination; Role of Tellurium in Organic Syntheses; Biocatalysis in Organic Syntheses.	8	4
5	Future Trends in Green Chemistry	Oxidation reagents and catalysts; Biomimetic, multifunctional reagents; Combinatorial green chemistry; Proliferation of solventless reactions; oncovalent derivatization; Green chemistry in sustainable development.	8	5
	nce Books:			
		: New Trends in Green Chemistry, Anamalaya Publishers (2005).		
		xford Green Chemistry- Theory and Practical, University Press (1998).		
		eal-World cases in Green Chemistry, American Chemical Society, Washington (2000). troduction to Green Chemistry, American Chemical Society, Washington (2002).		
	ning Source:			
	8	/en/greenchemistry/principles/12-principles-of-green-chemistry.html		
-	www.youtube.com/watcl			
-	-	og/green-chemistry-and-the-future-of-sustainability/		
mips.//c	//////////////////////////////////////	5 from memory and the future of sustainaomity		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO	101	102	105	104	105	100	107	100	1501	1502	1505	1504	1505
CO1	3	1	2	3	1	2	-	-	3	-	3	3	3
CO2	3	1	2	3	1	2	-	-	3	-	3	3	3
CO3	3	1	2	3	1	2	-	-	3	-	3	3	3
CO4	3	1	2	3	1	2	-	-	3	-	3	3	3
CO5	3	1	2	3	1	2	-	-	3	-	3	3	3
-			1 Low (approlation	. 2 Mode	rata Carro	lation 2	ubstantia	Correlati	070			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2019-2020										
Course Code	CH519	Title of the Course	Computational Methods In Chemistry	L	Т	Р	С			
Year	Second	Semester	Fourth	3	1	0	4			
Pre-Requisite	BSc. with Chemistry Co-requisite									
Course Objectives	The objective of this cou area of chemistry, inform		tion to chemo-informatics, Molecular modeling for dru	ıg desiş	gning a	nd oth	.er			

	Course Outcomes
CO1	The student is expected to achieve a good grasp of the concepts and applications of chemoinformatics.
CO2	Explain the various stages of drug discovery. Explain various structure-based drug design methods, define molecular modeling, the student is
	expected to achieve a better understanding of in-silico drug designing, and the factors influencing drug discovery Explain various structure-
	based drug design methods, bioinformatics in drug development.
CO3	Understand, algorithm for time dependence; leapfrog algorithm, Verlet algorithm, Boltzman velocity, duration of the MD run etc.
CO4	The student is expected to achieve a good grasp of the concepts and applications of chemoinformatics.
CO5	Explain the various stages of drug discovery. Explain various structure-based drug design methods, define molecular modeling, the student is
	expected to achieve a better understanding of in-silico drug designing, and the factors influencing drug discovery Explain various structure-
	based drug design methods, bioinformatics in drug development.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO							
1	Introduction to cheminformatics	Evolution of cheminformatics, history of chemical information science, use of cheminformatics, prospectus of cheminformatics, and history of medicinal chemistry. Prodrugs and soft drugs, drug target, drug solubility, natural resources of lead compounds, pharmacokinetics and drug metabolism. Molecular modeling using computer	8	1							
2	Occupational Safety; Molecular modelingIntroduction, force field, quantum chemistry, Schrödinger equation, potential energy functions, energy minimization, local and global minima, saddle point, grid search. Semi- empirical methods (ZDO, MNDO, AM1, PM3). Molecular mechanics; Definition, balls and springs, force fields, bond-stretching, bond-bending, dihedral motions, out of plane angle potential, non-bonded interaction, coulomb interactions. Derivative methods; Steepest descent, conjugate gradient and Newton-Raphson method.82										
3	Drug design and drug design and discovery, principles of drug development. Bioinformatics in										
4	Structure-based drug designing (SBDD)	Introduction, target identification and validation, homology modeling, receptor mapping, active site analysis, pharmacophore mapping and grid maps. Ligand-based drug designing (LBDD); Introduction, lead designing, combinatorial chemistry, high throughput screening (HTS), database generation and chemical libraries, ADME property. Introduction to docking, methods of docking, docking with AutoDock, Vina, Dock etc.	8	4							
5	Molecular dynamics (MD)	Introduction, Newton's equation of motion, equilibrium point, radial distribution function, pair correlation functions, MD methodology, algorithm for time dependence; leapfrog algorithm, Verlet algorithm, Boltzman velocity, duration of the MD run. Starting structure, analysis of MD job, uses in drug designing, ligand protein interactions.	8	5							
	nce Books:										
		Scientists and Wngineers, McGraw-Hill International Edition, New York (2006).									
		umming in Fortran 90 and 95, PHI Learning Pvt. Ltd, New Delhi (1997).	Iniversity Pr	·ess (1996)							
			W. H. Press, S. A. Teukolsky, W. H. Vetterling, B. P. Flannery, Fortran Numerical Recipes Volume 2 (Fortran 90), Cambridge University Press (1996).								

R. L. Schwartz, T. Christiansen, L. Wall, Learning Perl Second Edition, O'Reilly Media (1997). 5. Foy, Mastering Perl First Edition, O'Reilly Media (2007)
 L. Schwartz, Sc

e-Learning Source:

https://www.youtube.com/watch?v=yX_nPzmTpi8 https://www.youtube.com/watch?v=Y3utQZIPJ-4

https://www.jubilantbiosys.com/integrated-drug-discovery-services

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3		2		2	3	3	3	3	3	3	2	2
CO2	3				2	2	3	2	3	3	3	2	3
CO3	3		2		2	3	2	3	3	3	3	3	3
CO4	3	2	2		2	3	2	2	3	2	3	3	3
CO5	3	2	2		2	3	2	2	3	2	3	3	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sessio	Effective from Session: 2019-2020										
Course Code CH520		Title of the Course	Seminar	L	Т	Р	С				
Year Second		Semester	Fourth	0	0	4	2				
Pre-Requisite	BSc. with Chemistry	Co-requisite									
Course Objectives	Increase vocabTo build confid	lence to use English for	about communication style, develop learner autonomy.								

	Course Outcomes					
CO1	To develop and improve the communication skills					
CO2	To develop discussion and leadership abilities					
CO3	Skills for the development of demonstration abilities					
CO4	To develop skills for effective power point presentation					
CO5	To understand importance of gestures and body language during presentation					

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
C01	2	3	1	-	2	-	-	3	-	3	2	2	3
CO2	3	3	2	-	2	2	-	3	1	2	2	1	3
CO3	3	3	1	-	1	2	-	3	2	2	2	1	3
CO4	3	3	1	-	1	2	-	3	2	2	2	2	3
CO5	3	3	1	-	1	1	-	3	-	2	1	-	3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2019-2020									
Course Code	CH521	Title of the Course	Project Training and Evaluation		Т	Р	С		
Year	Second	Semester	Fourth	0	0	0	10		
Pre-Requisite	BSc. with Chemistry	Co-requisite							
Course Objectives	To provide the industrial exposure and enhance technical skills of students								

Course Outcomes						
CO1	Hands on training					
CO2	Integrate class room theory with laboratory practice.					
CO3	Understanding professional ethics of industry and code of conduct.					
CO4	Essential training in laboratory safety procedures					
CO5	Compilation of data and report writing					

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	1	-	-	3	2	3	3	3	3	3	3
CO2	3	-	1	-	-	3	1	3	3	2	2	3	3
CO3	3	2	1	-	3	2	-	3	3	3	1	2	3
CO4	3	1	1	-	2	3	2	3	3	2	3	3	3
CO5	3	3	1	-	2	3	-	3	3	3	3	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator Sign & Seal of HoD